Featured Publications

Nature Cell Bio (2022) 24:307

Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics.

Science (2021) 372:eabc7531

A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements.

Cancer Discovery (2020) 10:1410

RBMS1 Suppresses Colon Cancer Metastasis through Targeted Stabilization of Its mRNA Regulon.

Molecular Cell (2019) 75: 967

Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay.

Nature Medicine (2018) 24: 1743

Cancer cells exploit an orphan RNA to drive metastatic progression.

Cell (2016) 165: 1416

Modulated Expression of Specific tRNAs Drives Gene Expression and Cancer Progression.

Recent News

The Chan Zuckerberg Biohub Investigator Awards 2021

Jan 11th, 2022

The Chan Zuckerberg Biohub Investigator Program, open to faculty from Stanford University, UC San Francisco, and UC Berkeley, funds innovative, visionary research with the goal of building engaged, collaborative scientific communities to help solve critical challenges in biomedicine.The 86 awardees in our new cohort, who were chosen from nearly 700 applicants through a competitive process judged by nationally recognized external reviewers and a blue-ribbon Selection Advisory Committee, represent a diverse range of disciplines, including basic biological sciences, clinical biomedical sciences, physics, chemistry, engineering, computer and data sciences, statistics, and public health. See the announcement here.

Exai Bio Launches

Nov 10th, 2021

Exai Bio, a next-generation liquid biopsy company, recently launched to bring our orphan non-coding RNA species (oncRNAs) to the clinic. With $65M in financing will bring to bear resources that is needed to not only detect the presence of tumors, but also peer into their biology without a need for invasive biopsies. This work was spearhead by Dr. Lisa Fish, a former postdoc in the lab (and now Director of Research at Exai Bio). See the press release here.

The Vilcek Prizes for Creative Promise in Biomedical Science

Sep 9th, 2021

The Vilcek Prizes for Creative Promise in Biomedical Science are awarded to young foreign- born scientists living and working in the United States. Prizewinners are selected for the innovative promise of their early-career work: research and discoveries that represent a major step forward in their respective area of study, and advance the landscape of scientific research in the United States. Markita del Carpio Landry, Hani Goodarzi, and Harris Wang are the recipients of the 2022 Vilcek Prizes for Creative Promise in Biomedical Science. The Vilcek Foundation raises awareness of immigrant contributions in the United States and fosters appreciation for the arts and sciences. The foundation was established in 2000 by Jan and Marica Vilcek, immigrants from the former Czechoslovakia. See the announcement here.

Discovery and targeting of a novel pro-metastatic regulatory program of RNA splicing

May 18th, 2021

Cancer progression accompanies broad dysregulations in the splicing landscape of the cell. Building on our earlier work on RNA structural elements, we have now discovered a previously unknown structured element that is associated with increased exon inclusion. We revealed that SNRPA1, a core component of the spliceosome, moonlights as a regualtor of RNA splicing via its interactions with these elements. We also showed that SNRPA1, which is up-regulated in highly metastatic cells, acts as a driver of breast cancer metastasis by modulating isoform levels for specific target genes. Morpholino-based reversal of SNRPA1-mediated changes converts the cell into a less malignant state. Our results, now published in Science, also demonstrates the utility of hybrid computational/experimental platforms as potent engines of discovery. For a lay description of this study, see the write up by Jeff Norris puiblished here.

AACR-MPM Transformative Cancer Research

January 19th, 2021

AACR and MPM Oncology Charitable Foundation announced three grants to support transformative cancer research and our lab was one of the recipients. This funding mechanism is an innovative partnership between the American Association for Cancer Research (AACR) and the UBS Oncology Impact Fund (OIF) managed by MPM Capital. With support from this grant, we will expand on our research on the role of our newly discovered orpan non-coding RNAs to serve as building blocks for cancer-engineered regulatory programs.

An integrative in vitro and in silico screen reveals a molecular basis for sex differences in mortality from SARS-CoV-2

May 12th, 2020

With widespread societal and economical devastation, the new coronovirus pandemic has deeply reshaped our approach to life and how we do science. The heterogeneity of patient response to this virus remains a baffling mystery that complicates clinical response. Age was determined as a clear risk factor; however, it was soon discovered that risk of mortality from this infection is substantially higher in men. Recently, members of the Fattahi lab carried out a systematic in vitro screening of stem-cell derived cardiomyocites to identify regulators of ACE2 expression, an enzyme that acts as the receptor for SARS-CoV-2. We levergaed this valuable screen to train a deep learning model that is capable of large-scale in silico screens to identify other compounds that can target ACE2 expression. Systematic analyses of these hit compounds revealed Andregen signaling as a key pathway involved in ACE2 expression. Confirmatory analyses in the UK Biobank dataset revealed a consistent association between androgen levels and COVID-19 risk. This work is published as a research article in Cell Stem Cell and an eariler manuscript describing these results was published as a preprint. You can also read an interview with Dr. Faranak Fattahi putting some of these findings in context.

PRADA, a customized Lasso regression model, reveals RBMS1 as a suppressor of metastasis in colon cancer

April 27th, 2020

Identifying master regulators that drive pathological gene expression is a key challenge in precision oncology. Here, we have developed an analytical framework, named PRADA, that identifies oncogenic RNA-binding proteins through the systematic detection of coordinated changes in their target regulons. Application of this approach to data collected from clinical samples, patient-derived xenografts, and cell line models of colon cancer metastasis revealed the RNA-binding protein RBMS1 as a suppressor of colon cancer progression. We observed that silencing RBMS1 results in increased metastatic capacity in xenograft mouse models, and that restoring its expression blunts metastatic liver colonization. We have found that RBMS1 functions as a post-transcriptional regulator of RNA stability by directly binding its target mRNAs. Together, our findings establish a role for RBMS1 as a previously unknown regulator of RNA stability and as a suppressor of colon cancer metastasis with clinical utility for risk stratification of patients. We recently reported these findings in the journal Cancer Discovery. You can also read the commentary graciously written by Dr. Hannah Carter for this work in the same issue.

Nuclear TARBP2 as a regulator of RNA stability

September 5th, 2019

In our most recent paper, we have reported the functional dissection of a previously unknown pathway of RNA decay. This study was a follow-up to our discvoery of TARBP2 as a promoter of breast cancer metastasis (see here). In this collaborative work, we systematically dissected the molecular mechanism through which TARBP2 regulates the expression and stability of its target regulon. Based on our model, TARBP2 binds target pre-mRNAs co-transcriptionally and recruits the RNA methylation machinery to add m6A marks. RNA methylation, in turn, influences the binding patterns of splicing factors such as SRSF1 and diminishes efficient splicing of introns. Through its interaction with components of the nuclear surveillance machinery, TARBP2 delivers these mis-spliced products to the exosome complex for degradation. Finally, we also showed that TARBP2 not only promotes breast cancer metastasis, but also acts as an oncogene in lung cancer cells. See our published work here.

Introducing Orphan Non-coding RNAs (oncRNAs)

November 5th, 2018

We have recently annotated a new class of small RNAs, which we have named oncRNAs. These are largely absent in normal cells but emerge in cancer cells as a result of cellular transformation. We have demonstrated that cancer cells can "adopt" these orphan RNAs to carry out new functions relevant to the progression of the disease. Another benefit of oncRNAs became apparent once we realized that a large fraction of oncRNAs are released by cancer cells in exosomes. We think that since every tumor can be assigned a digital oncRNA barcode, i.e. a profile of oncRNA presence/absence, finding evidence of this barcode outside the cell can point to the existence of an underlying cancer cell from which these RNAs originate. You can read the paper in November's issue of Nature Medicine. You can also read a new release by UCSF on our work.

Opinion: Broken Promises Caused by the Travel Ban

June 28th, 2018

Read Hani's opinion piece on the impact of the travel ban on students and scholars, and the scientific community published in the Scientistl. You can also read an interview by a number of UCSF faculty with the Washington Post on this issue.

The AAAS Martin And Rose Wachtel Cancer Research Award

July 28th, 2017

Hani Goodarzi was named the recipient of the AAAS Martin And Rose Wachtel Cancer Research Award. The annual AAAS Martin and Rose Wachtel Cancer Research Award recognizes early-career scientists who have already made outstanding contributions to the field of cancer research. See the anouncement here. The prize was awarded in July at National Institute of Health (NCI) (see here for the NIH record of the talk).

AACR NextGen Stars

April 5th, 2017

Hani Goodarzi was awarded the AACR-Takeda Oncology NextGen Grant for Transformative Research by the American Association for Cancer Research (AACR). This award represents the AACR’s flagship funding initiative to stimulate highly innovative research from young investigators. This grant mechanism is intended to promote and support creative, paradigm-shifting cancer research that may not be funded through conventional channels.

Sidney Kimmel Foundation

March 18th, 2017

Hani Goodarzi was named a Kimmel Scholar by the Sidney Kimmel Foundation. Begun in 1997, the Kimmel Scholars Program was designed to jump-start the careers of the most promising and creative researchers and physician-scientists seeking solutions to the riddle of cancer. Over the two decades, the Program has contributed some of the most successful members to the next generation, or maybe two, of the nation’s leading cancer researchers.

NSF Graduate Research Fellowship Program

March 17th, 2017

Congratulations to our 2016 rotation students. Johnny Yu (BMS) and Bushra Bibi (Tetrad) for receiving the fellowship and Myles Hochman (Tetrad) for honorable mention. The NSF Graduate Research Fellowship Program recognizes and supports outstanding graduate students in NSF-supported science, technology, engineering, and mathematics disciplines who are pursuing research-based Master's and doctoral degrees at accredited United States institutions.

tRNAs as global regulators of gene expression

June 7th, 2016

Transfer-RNAs are tranditionally viewed as a static component of the protein synthesis machinery. Recently, several studies have raised the possibility that tRNAs are more dynamic and can support different cellular states and phenotypes. Although generally debated, some evidence has emerged that tRNA levels in the cell imapct the gene expression landscape in the cell. In a recent study, we demonstrated that the tRNA landscape is drastically modified in highly metastatic cells and that these modulations drive the expression of key promoters of metastasis. These results were published in Cell. You can also read a short preview about this study.

Want to discuss a project?

Do you have ideas that you think may help us do a better science? Then...

Contact us